TensorFlow应用:识别花的种类
这是一篇非常基础的TensorFlow的CNN应用教程,示例代码实现了花的种类识别,你可以在这里看到图像集的训练、模型的保存和调用方法。
笔者在Win10
+TensorFlow 1.8.0
下运行通过,Win10上部署TF的方法:使用Anaconda在Win10上快速部署TensorFlow
首先需要下载好数据集:http://download.tensorflow.org/example_images/flower_photos.tgz
为了能成功一次跑起来请注意数据集保存路径以及文件中需要修改的地方笔者已添加“请自行修改”的字样
数据集的训练training.py
,该文件实现了数据训练、模型的保存,哦对了,别忘了在该文件的目录下建个model
目录用来存放模型。
from skimage import io,transform import glob import os import tensorflow as tf import numpy as np import time #数据集地址,请自行修改 path='E:/TensorFlow/dataSets/flower_photos/' #模型保存地址,请自行修改 model_path='E:/TensorFlow/Projects/TF-CNN/model/model.ckpt' #将所有的图片resize成100*100 w=100 h=100 c=3 #读取图片 def read_img(path): cate=[path+x for x in os.listdir(path) if os.path.isdir(path+x)] imgs=[] labels=[] for idx,folder in enumerate(cate): for im in glob.glob(folder+'/*.jpg'): print('reading the images:%s'%(im)) img=io.imread(im) img=transform.resize(img,(w,h)) imgs.append(img) labels.append(idx) return np.asarray(imgs,np.float32),np.asarray(labels,np.int32) data,label=read_img(path) #打乱顺序 num_example=data.shape[0] arr=np.arange(num_example) np.random.shuffle(arr) data=data[arr] label=label[arr] #将所有数据分为训练集和验证集 ratio=0.8 s=np.int(num_example*ratio) x_train=data[:s] y_train=label[:s] x_val=data[s:] y_val=label[s:] #-----------------构建网络---------------------- #占位符 x=tf.placeholder(tf.float32,shape=[None,w,h,c],name='x') y_=tf.placeholder(tf.int32,shape=[None,],name='y_') def inference(input_tensor, train, regularizer): with tf.variable_scope('layer1-conv1'): conv1_weights = tf.get_variable("weight",[5,5,3,32],initializer=tf.truncated_normal_initializer(stddev=0.1)) conv1_biases = tf.get_variable("bias", [32], initializer=tf.constant_initializer(0.0)) conv1 = tf.nn.conv2d(input_tensor, conv1_weights, strides=[1, 1, 1, 1], padding='SAME') relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_biases)) with tf.name_scope("layer2-pool1"): pool1 = tf.nn.max_pool(relu1, ksize = [1,2,2,1],strides=[1,2,2,1],padding="VALID") with tf.variable_scope("layer3-conv2"): conv2_weights = tf.get_variable("weight",[5,5,32,64],initializer=tf.truncated_normal_initializer(stddev=0.1)) conv2_biases = tf.get_variable("bias", [64], initializer=tf.constant_initializer(0.0)) conv2 = tf.nn.conv2d(pool1, conv2_weights, strides=[1, 1, 1, 1], padding='SAME') relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_biases)) with tf.name_scope("layer4-pool2"): pool2 = tf.nn.max_pool(relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID') with tf.variable_scope("layer5-conv3"): conv3_weights = tf.get_variable("weight",[3,3,64,128],initializer=tf.truncated_normal_initializer(stddev=0.1)) conv3_biases = tf.get_variable("bias", [128], initializer=tf.constant_initializer(0.0)) conv3 = tf.nn.conv2d(pool2, conv3_weights, strides=[1, 1, 1, 1], padding='SAME') relu3 = tf.nn.relu(tf.nn.bias_add(conv3, conv3_biases)) with tf.name_scope("layer6-pool3"): pool3 = tf.nn.max_pool(relu3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID') with tf.variable_scope("layer7-conv4"): conv4_weights = tf.get_variable("weight",[3,3,128,128],initializer=tf.truncated_normal_initializer(stddev=0.1)) conv4_biases = tf.get_variable("bias", [128], initializer=tf.constant_initializer(0.0)) conv4 = tf.nn.conv2d(pool3, conv4_weights, strides=[1, 1, 1, 1], padding='SAME') relu4 = tf.nn.relu(tf.nn.bias_add(conv4, conv4_biases)) with tf.name_scope("layer8-pool4"): pool4 = tf.nn.max_pool(relu4, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID') nodes = 6*6*128 reshaped = tf.reshape(pool4,[-1,nodes]) with tf.variable_scope('layer9-fc1'): fc1_weights = tf.get_variable("weight", [nodes, 1024], initializer=tf.truncated_normal_initializer(stddev=0.1)) if regularizer != None: tf.add_to_collection('losses', regularizer(fc1_weights)) fc1_biases = tf.get_variable("bias", [1024], initializer=tf.constant_initializer(0.1)) fc1 = tf.nn.relu(tf.matmul(reshaped, fc1_weights) + fc1_biases) if train: fc1 = tf.nn.dropout(fc1, 0.5) with tf.variable_scope('layer10-fc2'): fc2_weights = tf.get_variable("weight", [1024, 512], initializer=tf.truncated_normal_initializer(stddev=0.1)) if regularizer != None: tf.add_to_collection('losses', regularizer(fc2_weights)) fc2_biases = tf.get_variable("bias", [512], initializer=tf.constant_initializer(0.1)) fc2 = tf.nn.relu(tf.matmul(fc1, fc2_weights) + fc2_biases) if train: fc2 = tf.nn.dropout(fc2, 0.5) with tf.variable_scope('layer11-fc3'): fc3_weights = tf.get_variable("weight", [512, 5], initializer=tf.truncated_normal_initializer(stddev=0.1)) if regularizer != None: tf.add_to_collection('losses', regularizer(fc3_weights)) fc3_biases = tf.get_variable("bias", [5], initializer=tf.constant_initializer(0.1)) logit = tf.matmul(fc2, fc3_weights) + fc3_biases return logit #---------------------------网络结束--------------------------- regularizer = tf.contrib.layers.l2_regularizer(0.0001) logits = inference(x,False,regularizer) #(小处理)将logits乘以1赋值给logits_eval,定义name,方便在后续调用模型时通过tensor名字调用输出tensor b = tf.constant(value=1,dtype=tf.float32) logits_eval = tf.multiply(logits,b,name='logits_eval') loss=tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=y_) train_op=tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss) correct_prediction = tf.equal(tf.cast(tf.argmax(logits,1),tf.int32), y_) acc= tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) #定义一个函数,按批次取数据 def minibatches(inputs=None, targets=None, batch_size=None, shuffle=False): assert len(inputs) == len(targets) if shuffle: indices = np.arange(len(inputs)) np.random.shuffle(indices) for start_idx in range(0, len(inputs) - batch_size + 1, batch_size): if shuffle: excerpt = indices[start_idx:start_idx + batch_size] else: excerpt = slice(start_idx, start_idx + batch_size) yield inputs[excerpt], targets[excerpt] #训练和测试数据,可将n_epoch设置更大一些 n_epoch=10 batch_size=64 saver=tf.train.Saver() sess=tf.Session() sess.run(tf.global_variables_initializer()) for epoch in range(n_epoch): start_time = time.time() #training train_loss, train_acc, n_batch = 0, 0, 0 for x_train_a, y_train_a in minibatches(x_train, y_train, batch_size, shuffle=True): _,err,ac=sess.run([train_op,loss,acc], feed_dict={x: x_train_a, y_: y_train_a}) train_loss += err; train_acc += ac; n_batch += 1 print(" train loss: %f" % (np.sum(train_loss)/ n_batch)) print(" train acc: %f" % (np.sum(train_acc)/ n_batch)) #validation val_loss, val_acc, n_batch = 0, 0, 0 for x_val_a, y_val_a in minibatches(x_val, y_val, batch_size, shuffle=False): err, ac = sess.run([loss,acc], feed_dict={x: x_val_a, y_: y_val_a}) val_loss += err; val_acc += ac; n_batch += 1 print(" validation loss: %f" % (np.sum(val_loss)/ n_batch)) print(" validation acc: %f" % (np.sum(val_acc)/ n_batch)) saver.save(sess,model_path) sess.close()
预测predict.py
,该文件实现了模型的调用及花儿类型预测
from skimage import io,transform import tensorflow as tf import numpy as np #此处为要预测识别的测试图片,可图片搜索下载,请自行修改 path1 = "E:/TensorFlow/dataSets/flower_photos/daisy/5547758_eea9edfd54_n.jpg" path2 = "E:/TensorFlow/dataSets/flower_photos/dandelion/7355522_b66e5d3078_m.jpg" path3 = "E:/TensorFlow/dataSets/flower_photos/roses/394990940_7af082cf8d_n.jpg" path4 = "E:/TensorFlow/dataSets/flower_photos/sunflowers/6953297_8576bf4ea3.jpg" path5 = "E:/TensorFlow/dataSets/flower_photos/tulips/10791227_7168491604.jpg" flower_dict = {0:'dasiy',1:'dandelion',2:'roses',3:'sunflowers',4:'tulips'} w=100 h=100 c=3 def read_one_image(path): img = io.imread(path) img = transform.resize(img,(w,h)) return np.asarray(img) with tf.Session() as sess: data = [] data1 = read_one_image(path1) data2 = read_one_image(path2) data3 = read_one_image(path3) data4 = read_one_image(path4) data5 = read_one_image(path5) data.append(data1) data.append(data2) data.append(data3) data.append(data4) data.append(data5) #训练好的模型,请自行修改目录 saver = tf.train.import_meta_graph('E:/TensorFlow/Projects/TF-CNN/model/model.ckpt.meta') saver.restore(sess,tf.train.latest_checkpoint('E:/TensorFlow/Projects/TF-CNN/model/')) graph = tf.get_default_graph() x = graph.get_tensor_by_name("x:0") feed_dict = {x:data} logits = graph.get_tensor_by_name("logits_eval:0") classification_result = sess.run(logits,feed_dict) #打印出预测矩阵 print(classification_result) #打印出预测矩阵每一行最大值的索引 print(tf.argmax(classification_result,1).eval()) #根据索引通过字典对应花的分类 output = [] output = tf.argmax(classification_result,1).eval() for i in range(len(output)): print("第",i+1,"朵花预测:"+flower_dict[output[i]])
将以上两个文件保存下来后修改相关路径配置
后就可以运行了,先训练
python training.py
训练结果
train loss: 1330.096962 train acc: 0.323958 validation loss: 86.252253 validation acc: 0.409091 train loss: 71.787370 train acc: 0.529514 validation loss: 78.465698 validation acc: 0.545455 train loss: 58.876704 train acc: 0.628125 validation loss: 73.999440 validation acc: 0.549716 train loss: 51.185135 train acc: 0.690972 validation loss: 71.450195 validation acc: 0.553977 train loss: 42.075136 train acc: 0.752083 validation loss: 73.619540 validation acc: 0.572443 train loss: 33.243433 train acc: 0.812153 validation loss: 73.291354 validation acc: 0.583807 train loss: 23.589171 train acc: 0.879167 validation loss: 83.940641 validation acc: 0.562500 train loss: 20.822868 train acc: 0.888889 validation loss: 82.642556 validation acc: 0.607955 train loss: 12.286841 train acc: 0.941667 validation loss: 89.398277 validation acc: 0.596591 train loss: 7.091239 train acc: 0.970833 validation loss: 95.333896 validation acc: 0.620739
接下来预测
python predict.py
运行结果
[[10.594988 3.5799916 -8.448204 -3.8759303 -6.4648085 ] [-0.1714828 5.6841183 -2.7628996 -1.1280164 1.3521246 ] [-4.4547043 -4.8152595 11.268807 -4.099991 4.0173736 ] [-9.557638 -0.57269955 -5.8606277 12.746286 5.3812127 ] [-6.17485 -6.020256 4.201649 1.3861963 10.299406 ]] [0 1 2 3 4] 第 1 朵花预测:dasiy 第 2 朵花预测:dandelion 第 3 朵花预测:roses 第 4 朵花预测:sunflowers 第 5 朵花预测:tulips